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VIABILITY FOR A NONLINEAR MULTI-VALUED SYSTEM
ON LOCALLY CLOSED GRAPH
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Abstract. The purpose of this paper is to prove some necessary and sufficient
conditions in order that the graph K of the multi-function K : I  D(A) × D(B) be
C0-viable with respect to the nonlinear system of the form

u′(t) ∈ Au(t) + F (t, u(t), v(t)), t ≥ τ

v′(t) ∈ Bv(t) +G(t, u(t), v(t)), t ≥ τ

u(τ) = ξ, v(τ) = η,

where I ⊆ R is an open from the right interval, X and Y are real Banach spaces, A :
D(A) ⊆ X  X and B : D(B) ⊆ Y  Y are m-dissipative operators generating
nonlinear semigroups of contractions, F : K → X is a given function and G : K Y is a
nonempty valued multi-function. We provide a necessary and sufficient condition in order
that the system has at least one C0-solution (u, v) satisfying time-dependent constrains
(u(t), v(t)) ∈ K(t) for each t. We include a comparison result referring to a nonlinear
system with multi-valued perturbations of subdifferentials in a Hilbert space.
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Key words: m-dissipative operator, reaction-diffusion system, viable set, tangency

condition.

1. Introduction

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be real Banach spaces and let A : D(A) ⊆
X  X and B : D(B) ⊆ Y  Y be m-dissipative operators generating the
nonlinear semigroups of contractions, {SA(t) : D(A) → D(A); t ≥ 0} and
{SB(t) : D(B) → D(B); t ≥ 0} respectively. Let I ⊆ R be a nonempty and
open from the right interval, let K : I  D(A)×D(B) be a given nonempty
valued multi-function and K := graph (K).
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We consider the system

(1.1)


u′(t) ∈ Au(t) + F (t, u(t), v(t)), t ≥ τ

v′(t) ∈ Bv(t) +G(t, u(t), v(t)), t ≥ τ

u(τ) = ξ, v(τ) = η,

where (τ, ξ, η) ∈ K, F : K → X is a given function and G : K  Y is a
multi-function with nonempty values.

We are interested in finding necessary and sufficient conditions in order
that K be C0-viable with respect to (A+ F,B +G).

Definition 1.1. The continuous function (u, v) : [ τ, T ] → D(A)×D(B)
is a C0-solution of (1.1) on [ τ, T ] if (t, u(t), v(t)) ∈ K for each t ∈ [ τ, T ], the
function f(t) = F (t, u(t), v(t)) for each t ∈ [ τ, T ], belongs to L1( τ, T ;X )
and there exists g ∈ L1( τ, T ;Y ) such that g(t) ∈ G(t, u(t), v(t)) a.e. for
t ∈ [ τ, T ] and (u, v) is a C0-solution on [ τ, T ] of the problem

(1.2)


u′(t) ∈ Au(t) + f(t),

v′(t) ∈ Bv(t) + g(t),

u(τ) = ξ, v(τ) = η.

Definition 1.2. The graph, K, of K : I  D(A)×D(B), is C0-viable
with respect to (A + F,B + G) if for each (τ, ξ, η) ∈ K there exists T > τ,
[ τ, T ] ⊆ I such that the problem (1.1) has at least one C0-solution on
[ τ, T ].

A growing literature is devoted to the abstract theory of viability re-
ferring to the differential inclusion u′(t) ∈ Au(t) + F (t, u(t)). We mention
the starting paper of Pavel [15] for the semilinear single-valued case and
Vrabie [19] for nonlinear case. Referring to the semilinear multi-valued
case when A is linear unbounded, K ⊆ I × X is locally closed set and
F : K  X is multi-valued, we notice the works of Pavel-Vrabie [16], [17],
Cârjă-Vrabie [11], [10], Cârjă-Necula-Vrabie [8]. As concerns the
fully nonlinear inclusion see Bothe [2], [3], Cârjă-Necula-Vrabie [7],[9].
For the case in which F is defined on the graph K, of the multi-function
K : I  D(A) see Necula-Popescu-Vrabie [13], [14]. They intro-
duced the concept of A-quasi-tangent set to the graph of K at a given
point (τ, ξ) ∈ K in order to give a necessary and sufficient condition for
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C0-viability referring to the nonlinear inclusion with multi-valued and t-
discontinuous perturbations defined on graphs. We recall this concept and
the necessary condition for C0-viability in section 2.

The C0-viability problem of a locally closed set with respect to the
multi-valued reaction-diffusion system of the form (1.1) has been studied
by Burlică [4] in the semilinear case and by Roşu [18] in the nonlinear
case. The semilinear system with multi-valued perturbations defined on
graphs has been considered by Burlică [5].

Our paper is divided into 5 sections. In Section 2 we recall some results
referring to evolutions governed by m-dissipative operators, the concept of
tangent sets and some concepts about multi-functions. The third section
contains the main results for C0-viability concerning the system (1.1), while
in Section 4 we prove the main sufficient condition. In Section 5, as an
application of our viability results, we give a comparison result referring to
a nonlinear system with multi-valued perturbations of subdifferentials in a
Hilbert space.

2. Preliminaries

In that follows, (X, ∥ · ∥) denotes a real Banach space. For ξ ∈ X and
ρ > 0, D(ξ, ρ) denotes the closed ball in X of radius ρ centered in ξ and
S(ξ, ρ) denotes the corresponding open ball. For x ∈ X,C ⊆ X and E ⊆ X,
we denote

∥C∥ = sup
x∈C

∥x∥, dist(x,C) = inf
y∈C

∥x−y∥ and dist(E,C) = inf
(x,y)∈E×C

∥x−y∥.

Let A : D(A) ⊆ X  X be an m-dissipative operator, ξ ∈ D(A) and
f ∈ L1(τ, T ;X) and let us consider the Cauchy problem:

(2.1)

{
u′(t) ∈ Au(t) + f(t), t ≥ τ

u(τ) = ξ.

Definition 2.1. A C0-solution of the problem (2.1) is a continuous
function u ∈ C([ τ, T ];X) satisfying u(τ) = ξ and, for each τ < c < T and
ε > 0 there exist

(i) τ = t0 < t1 < · · · < c ≤ tn < T, tk − tk−1 ≤ ε for k = 1, 2, . . . , n;

(ii) f1, . . . , fn ∈ X with
∑n

k=1

∫ tk
tk−1

∥f(t)− fk∥dt ≤ ε;
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(iii) v0, . . . , vn ∈ X satisfying:

vk − vk−1

tk − tk−1
∈ Avk + fk for k = 1, 2, . . . , n

∥u(t)− vk∥ ≤ ε for t ∈ [tk−1, tk), k = 1, 2, . . . , n.

Theorem 2.1. Let A : D(A) ⊆ X  X be m-dissipative. Then, for
each ξ ∈ D(A) and f ∈ L1(τ, T ;X), there exists a unique C0-solution
u : [ τ, T ] → D(A) of the problem (2.1).

See Lakshmikantham-Leela [12, Theorem 3.6.1, p. 116].
We denote by u(·, τ, ξ, f) : [ τ, T ] → D(A) the unique C0-solution of

(2.1) satisfying u(τ, τ, ξ, f) = ξ. We recall that, if ũ = u(·, τ, ξ, f) and
ṽ = u(·, τ, η, g) we have

(2.2) ∥ũ(t)− ṽ(t)∥ ≤ ∥ξ − η∥+
∫ t

τ
∥f(s)− g(s)∥ds,

for each t ∈ [ τ, T ]. Moreover, for each τ ≤ a ≤ ν ≤ t ≤ ν + δ, we have the
following evolution property u(t, a, ξ, f) = u(t, ν, u(ν, a, ξ, f), f |[ν,ν+δ]). See
Vrabie [20, Corollary 1.7.1, p. 26].

If A : D(A) ⊆ X  X is m-dissipative, {S(t) : D(A) → D(A); t ≥ 0}
denotes the nonlinear semigroup of nonexpansive mappings generated by A
on D(A), i.e. S(t)ξ = u(t, 0, ξ, 0) for each t ≥ 0 and ξ ∈ D(A).

For more details referring to evolutions governed by m-dissipative oper-
ators, see Barbu [1], Lakshmikantham-Leela [12] or Vrabie [20].

Now, let us consider the Cauchy problem

(2.3)

{
u′(t) ∈ Au(t) + F (t, u(t)),

u(τ) = ξ,

where A : D(A) ⊆ X  X is m-dissipative, I ⊆ R is a nonempty and open
from the right interval, K : I  D(A) and F : K  X are two multi-
functions with nonempty values and K ⊆ I ×D(A) is the graph of K, i.e.
K = {(t, u); u ∈ K(t)}.

Definition 2.2. The continuous function u : [ τ, T ] → X is a C0-
solution of the problem (2.3) if (t, u(t)) ∈ K for each t ∈ [ τ, T ], there exists
f ∈ L1(τ, T ;X), with f(s) ∈ F (s, u(s)) a.e. for s ∈ [ τ, T ] and u is a
C0-solution on [ τ, T ] of the problem (2.1) in the sense of Definition 2.1.
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Definition 2.3. The graph K is C0-viable with respect to A + F if for
each (τ, ξ) ∈ K there exists T > τ, [ τ, T ] ⊆ I such that (2.3) has at least
one C0-solution u : [ τ, T ] → X.

We recall the concepts of A-tangent set and A-quasi-tangent set intro-
duced by Cârjă-Necula-Vrabie [6] in the constant case, i.e. K(t) = K
for each t ∈ I, and by Necula-Popescu-Vrabie [14] in the general case.
Let (τ, ξ) ∈ K and let E be a nonempty and bounded subset in X.

Definition 2.4. We say that the set E ⊆ X is
(i) A-tangent to K at the point (τ, ξ) if

(2.4) lim inf
h↓0

1

h
dist (u(τ + h, τ, ξ, E);K(τ + h)) = 0,

where

u(τ + h, τ, ξ, E) = {u(τ + h, τ, ξ, η); η ∈ E};

(ii) A-quasi-tangent to K at the point (τ, ξ) if

(2.5) lim inf
h↓0

1

h
dist (u(τ + h, τ, ξ,FE);K(τ + h)) = 0,

where u(τ + h, τ, ξ,FE) = {u(τ + h, τ, ξ, f); f ∈ L1
loc(R;X), f(s) ∈ E a.e.

for s ∈ R}.

We denote by TSAK(τ, ξ) the class of all A-tangent sets to K at (τ, ξ) ∈ K

and by QTSAK(τ, ξ) the class of all A-quasi-tangent sets to K at (τ, ξ) ∈ K.
Obviously, we have TSAK(τ, ξ) ⊆ QTSAK(τ, ξ).

Next, we recall some basic concepts and results fromNecula-Popescu-
Vrabie [14], we need in the sequel. Throughout, λ is the Lebesgue measure
on R.

Definition 2.5. The multi-function F : K  X is called (strongly-
weakly) almost u.s.c. if, for each ε > 0, there exists an open set Oε ⊆ I
such that λ(Oε) ≤ ε and F |[(I\Oε)×X]∩K is (strongly-weakly) u.s.c.

Definition 2.6. The multi-function F : K  X is called essentially
locally bounded if, for each (τ, ξ) ∈ K, there exist a negligible setN1 ⊂ I, ρ >
0 and l1 ∈ L∞

loc(I;R) such that for all (t, u) ∈ ((I \N1) ×D(ξ, ρ)) ∩K, we
have ∥F (t, u)∥ ≤ l1(t). If the same condition is satisfied with l1 ∈ L1

loc(I;R),
we say that F is locally integrally bounded.
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Remark 2.1. If D(A) is separable, we can choose N1 in Definition 2.6
independent of (τ, ξ) ∈ K.

Definition 2.7. The graph K is A-C0-viable by itself if for each (τ, ξ) ∈
K there exist T > τ, ρ > 0 and l2 ∈ L1

loc(I;R), so that for each (τ̃ , ξ̃) ∈
( [ τ, T ) × S(ξ, ρ)) ∩ K, there exist T̃ ∈ ( τ̃ , T ] and a pair of functions,
(g, v) ∈ L1([τ̃ , T̃ ];X)× C([ τ̃ , T̃ ];X), satisfying:

(i) v(t) = u(t, τ̃ , ξ̃, g) for each t ∈ [τ̃ , T̃ ];

(ii) (t, v(t)) ∈ ([τ̃ , T̃ ]× S(ξ, ρ)) ∩K, for each t ∈ [τ̃ , T̃ ];

(iii) ∥g(s)∥ ≤ l2(s) a.e. for s ∈ [τ̃ , T̃ ].

A pair (g, v) satisfying (i)-(iii) is called simple solution issuing from
(τ̃ , ξ̃) ∈ ( [ τ, T )× S(ξ, ρ)) ∩K.

Remark 2.2. (i) If K : I  D(A) is constant and S(t)K ⊆ K for each
t ≥ 0, then K is A-C0-viable by itself.

(ii) If K is C0-viable with respect to A + F, where F : K  X is
essentially locally bounded multi-function, then K is A-C0-viable by itself.

Definition 2.8. (i) The graph K is locally closed from the left if for
each (τ, ξ) ∈ K there exist T > τ and ρ > 0 such that, for each (τn, ξn) ∈
( [ τ, T ]×D(ξ, ρ))∩K, with (τn)n nondecreasing, limn τn = τ̃ and limn ξn =
ξ̃, we have (τ̃ , ξ̃) ∈ K;

(ii) The graph K is closed from the left if for each (τn, ξn) ∈ K, with
(τn)n nondecreasing, limn τn = τ̃ and limn ξn = ξ̃, we have (τ̃ , ξ̃) ∈ K.

Definition 2.9. An m-dissipative operator A : D(A) ⊆ X  X is of
compact type if for each sequence ((fn, un))n in L1(τ, T ;X) × C([ τ, T ];X)
with un a C0-solution of the problem u′n(t) ∈ Aun(t) + fn(t) on [ τ, T ] for
n = 1, 2, . . . , limn fn = f weakly in L1(τ, T ;X) and limn un = u strongly
in C([ τ, T ];X), it follows that u is a C0-solution of the problem u′(t) ∈
Au(t) + f(t) on [ τ, T ].

We conclude this section with a necessary condition for C0-viability
referring to the inclusion (2.3).

Theorem 2.2. Let X be a Banach space, let A : D(A) ⊆ X  X be
an m-dissipative operator which generates a nonlinear semigroup of con-
tractions on D(A) and let F : K  X be a multi-function with nonempty
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and closed values, almost u.s.c. and locally integrally bounded. If D(A) is
separable and K is C0-viable with respect to A + F, then K is A-C0-viable
by itself and there exists a set N ⊆ I, with λ(N) = 0, such that, for each
(τ, ξ) ∈ [ (I \N)×X] ∩K, we have F (τ, ξ) ∈ QTSAK(τ, ξ).

See Necula-Popescu-Vrabie [14, Theorem 4.1].

3. The main results

The aim of this section is to present the necessary and sufficient conditions
for C0-viability referring to the systems of the form (1.1).

Remark 3.1. The system (1.1) can be rewritten as a multi-valued non-
linear Cauchy problem in the product space Z = X × Y endowed with the
norm ∥ · ∥Z, defined by ∥(x, y)∥Z = ∥x∥X + ∥y∥Y for each (x, y) ∈ Z. Let
A = (A,B) : D(A) ⊆ Z → Z be defined by D(A) = D(A)×D(B), A(z) =
(Ax,By ) for each z = (x, y) ∈ D(A) and let F : K  Z be the multi-
function defined by F(t, z) = (F (t, z), G(t, z) ) = {(F (t, z), w); w ∈ G(t, z)}
for each (t, z) ∈ K. So, the system (1.1) can be rewritten as

(3.1)

{
z′(t) ∈ Az(t) + F(t, z(t)), t ≥ τ

z(τ) = ζ,

where ζ = (ξ, η). Let us remark that, if {SA : D(A) → D(A); t ≥ 0}
and {SB(t) : D(B) → D(B); t ≥ 0} are the semigroups of contractions
generated by A and B, then A generates the semigroup { S(t) : Z → Z; t ≥
0}, given by S(t)(x, y) = (SA(t)x, SB(t)y), for each t ≥ 0 and (x, y) ∈ Z.

We also remark that the graphK is C0-viable with respect to (A+F,B+
G) in sense of Definition 1.2 if and only if K is C0-viable with respect to
A + F in sense of Definition 2.3, which means that for each (τ, ζ) ∈ K,
there exists T > τ, [ τ, T ] ⊆ I such that (3.1) has at least one C0-solution
z : [ τ, T ] → Z with (t, z(t)) ∈ K for each t ∈ [ τ, T ].

We introduce the following hypotheses:

(H1) A : D(A) ⊆ X  X and B : D(B) ⊆ Y  Y are m-dissipative
operators and {SA(t) : D(A) → D(A); t ≥ 0} and {SB(t) : D(B) →
D(B); t ≥ 0} are the nonlinear semigroups of contractions generated
by A and B respectively;
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(H2) the semigroup {SB(t) : D(B) → D(B); t ≥ 0} is compact, i.e., SB(t)
is compact for each t > 0;

(H3) B : D(B) ⊆ Y  Y is of compact type;

(H4) the graph K is A-C0-viable by itself;

(H5) the graph K is locally closed from the left;

(H6) F : I × X × Y → X is continuous on I × X × Y and locally Lip-
schitz with respect to its second argument, i.e., for each (τ, ξ, η) ∈
I × X × Y there exist T > τ, ρ > 0 and L = Lτ,ξ,η > 0 such that
∥F (t, u, v) − F (t, ũ, v)∥X ≤ L∥u − ũ∥X for each (t, u, v), (t, ũ, v) ∈
[ τ, T ]×DX(ξ, ρ)×DY (η, ρ);

(H7) G : K Y is essentially locally bounded;

(H8) G : K Y is almost strongly-weakly u.s.c.;

(H9) G : K Y is almost u.s.c.;

(H10) there exists a set N ⊆ I, with λ(N) = 0 such that for each (τ, ξ, η) ∈
[(I \N)×X × Y ]∩K, we have (F (τ, ξ, η), G(τ, ξ, η)) ∈ QTSAK(τ, ξ, η).

From Theorem 2.2 and Remark 3.1 we deduce:

Theorem 3.1. Let us assume that (H1) is satisfied and D(A) and D(B)
are separable. Let I ⊆ R be a nonempty and open from the right interval,
let K : I  D(A) × D(B) be a multi-function with nonempty values and
K = graph(K). Let F : K → X be a continuous function and let G : K Y
be a multi-function with nonempty and closed values, almost u.s.c. and
locally integrally bounded. If K is C0-viable with respect to (A+F,B +G),
then (H4) and (H10) are satisfied.

The next result is the main sufficient condition of C0-viability.

Theorem 3.2. Let X and Y be Banach spaces, I ⊆ R be a nonempty
and open from the right interval, let K : I  D(A) × D(B) be a multi-
function with nonempty values and K = graph(K). Let us assume that
(H1), (H2), (H3), (H4), (H5) and (H6) are satisfied. Let G : K  Y be a
nonempty, convex and weakly compact valued multi-function which satisfies
(H7) and (H8). If the tangency condition (H10) is satisfied, then K is C0-
viable with respect to (A + F,B + G). If D(A) is separable and, instead



9 NONLINEAR MULTI-VALUED SYSTEMS ON GRAPHS 351

of (H8), we assume that (H9) is satisfied, then a necessary and sufficient
condition in order that K be C0-viable with respect to (A + F,B + G) is
(H10).

The necessity follows from Theorem 3.1 by observing that (H2) implies
the separability of D(B), while the sufficiency will be proved in the next
section.

4. Proof of Theorem 3.2

Proof. From Remark 3.1, it suffices to show that the set K is C0-viable
with respect to A+F . Let (τ, ζ) = (τ, ξ, η) ∈ K be arbitrary. We will prove
that the problem (3.1) has at least one C0-solution on an interval [ τ, T0 ].
Let Z ⊆ I be a negligible set including the negligible sets from (H7) and
(H10). Let ρ > 0, T̃ > τ, [ τ, T̃ ] ⊆ I, M0 > 0, L > 0 and l1 ∈ L∞

loc(I;R)
be such that ([ τ, T̃ ] × DZ(ζ, ρ)) ∩ K is closed from the left and the next
condition are satisfied:

(4.1) ∥F (t, u, v)∥X ≤M0

for each (t, u, v) ∈ [ τ, T̃ ]×DX(ξ, ρ)×DY (η, ρ),

(4.2) ∥F (t, u, v)− F (t, ũ, v)∥X ≤ L∥u− ũ∥X

for each (t, u, v), (t, ũ, v) ∈ [ τ, T̃ ]×DX(ξ, ρ)×DY (η, ρ),

(4.3) ∥G(t, u, v)∥Y ≤ l1(t)

for each (t, u, v) ∈ (([ τ, T̃ ] \ Z)×DX(ξ, ρ)×DY (η, ρ)) ∩K.
Let (εn)n ↓ 0 be a sequence in (0, 1) and let (On)n≥1 ⊆ R be a sequence

of open sets such that:

(a) Z ⊆ On for each n ≥ 1;

(b) On+1 ⊆ On and λ([ τ, T ] ∩ On) ≤ εn for each n ≥ 1;

(c) G|[(I\On)×Z]∩K is strongly-weakly u.s.c., for each n ≥ 1.

Now, from Necula-Popescu-Vrabie [14, Lemma 5.1], we deduce that
there exist T ∈ (τ, T̃ ], independent of n, and a sequence of (εn,On)-approxi-
mate C0-solution of (3.1) on [ τ, T ], ((αn, f̃n, zn))n. This means that, for
each n ≥ 1, αn : [ τ, T ] → [ τ, T ] is nondecreasing and right continuous, f̃n :
[ τ, T ] → Z is measurable, zn ∈ C([ τ, T ];Z) and the following conditions
are satisfied.
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(i) t− εn ≤ αn(t) ≤ t for all t ∈ [ τ, T ], αn(T ) = T ;

(ii) for each t ∈ [ τ, T ] for which αn(t) ∈ On it follows that [αn(t), t] ⊆ On;

(iii) zn(αn(t)) ∈ DZ(ζ, ρ) ∩K(αn(t)) for all t ∈ [ τ, T ];

(iv) f̃n(t) ∈ F(αn(t), zn(αn(t))) for each t ∈ [ τ, T ] \ On;

(v) ∥f̃n(t)∥Z ≤ l(t) a.e. for t ∈ [ τ, T ], with l(t) = max{M0 + l1(t), l2(t)}
whereM0 is from (4.1), l1 ∈ L∞

loc(I;R) is from (4.3) and l2 ∈ L1
loc(I;R)

is as in Definition 2.7;

(vi) zn(τ) = ζ and ∥zn(t)−u(t, αn(s), zn(αn(s)), f̃n)∥Z ≤ (t−αn(s))εn for
all t, s ∈ [ τ, T ], τ ≤ s ≤ t ≤ T ;

(vii) ∥zn(t)− zn(αn(t))∥Z ≤ εn for all t ∈ [ τ, T ];

(viii) supt∈[ τ,T ] ∥S(t)ζ − ζ∥Z +
∫ T
τ l(s) ds+ T − τ < ρ.

Let us denote by f̃n := (fn, gn) and by zn := (un, vn). By (vi), for s = τ,
we have

(4.4) ∥zn(t)− u(t, τ, ζ, f̃n)∥Z ≤ (t− τ)εn

for each t ∈ [ τ, T ], where u(·, τ, ζ, f̃n) is the C0-solution of the problem

(4.5)

{
z′(t) ∈ Az(t) + f̃n(t)

z(τ) = ζ.

This means that u(·, τ, ζ, f̃n) = (x(·, τ, ξ, fn), y(·, τ, η, gn)) where x(·) =
x(·, τ, ξ, fn) is the C0-solution of the problem

(4.6)

{
x′(t) ∈ Ax(t) + fn(t)

x(τ) = ξ,

and y(·) = y(·, τ, η, gn) is the C0-solution of the problem

(4.7)

{
y′(t) ∈ By(t) + gn(t)

y(τ) = η.
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We will prove that, on a subsequence at least, (zn)n is uniformly con-
vergent on an interval [ τ, T0 ] to some function z which is a C0-solution of
(3.1).

From (i), we obtain

(4.8) lim
n→∞

αn(t) = t

uniformly for t ∈ [ τ, T ].
By (v), we have ∥gn(t)∥Y ≤ l(t) for each n = 1, 2, . . . and for all t ∈

[ τ, T ] with l ∈ L1
loc(I;R). Thus {gn; n = 1, 2, . . .} is uniformly integrable

in L1(τ, T ;Y ). Since B generates a compact semigroup, from (4.7), thanks
to Vrabie [20, Baras’ Theorem 2.3.3, p. 47], we conclude that there exists
ỹ ∈ C([ τ, T ];Y ) such that, on a subsequence at least,

(4.9) lim
n→∞

y(t, τ, η, gn) = ỹ(t)

uniformly for t ∈ [ τ, T ]. From (4.4) and (4.8), we deduce

(4.10) lim
n→∞

vn(t) = lim
n→∞

vn(αn(t)) = ỹ(t)

uniformly for t ∈ [ τ, T ]. Since, by (iii), we have vn(αn(t)) ∈ DY (η, ρ) we
deduce ỹ(t) ∈ DY (η, ρ) for all t ∈ [ τ, T ].

Now, let us consider the Cauchy problem:

(4.11)

{
x′(t) = Ax(t) + F (t, x(t), ỹ(t)), t ∈ [ τ, T ]

x(τ) = ξ.

Since A is m-dissipative operator, ξ ∈ D(A) and the function f0 : [ τ, T ]×
X → X, f0(t, x) = F (t, x, ỹ(t)) for each (t, x) ∈ [ τ, T ]×X, is continuous on
[ τ, T ]×X and locally Lipschitz with respect to x ∈ X, it follows that there
exists T0 ∈ ( τ, T ] such that the problem (4.11) has an unique C0-solution
x̃ : [ τ, T0] → D(A).

Let us prove now that limn un(t) = x̃(t) uniformly for t ∈ [ τ, T0 ]. From
(iv) we have fn(s) ∈ F (αn(s), un(αn(s)), vn(αn(s))) for all s ∈ [ τ, T0 ] \On.
From this and (2.2), we deduce

∥x(t, τ, ξ, fn)− x̃(t)∥X ≤
∫ t

τ
∥fn(s)− F (s, x̃(s), ỹ(s))∥X ds

≤
∫
[ τ,t ]\On

∥F (αn(s), zn(αn(s)))− F (s, x̃(s), ỹ(s))∥X ds
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+

∫
[ τ,t ]∩On

∥fn(s)− F (s, x̃(s), ỹ(s))∥X ds

≤
∫
[ τ,t ]

∥F (αn(s), un(αn(s)), vn(αn(s)))− F (αn(s), x̃(s), vn(αn(s)))∥X ds

+

∫
[ τ,t ]

∥F (αn(s), x̃(s), vn(αn(s)))− F (s, x̃(s), ỹ(s))∥X ds

+

∫
[ τ,t ]∩On

(∥fn(s)∥X + ∥F (s, x̃(s), ỹ(s))∥X) ds

for each t ∈ [ τ, T0 ]. Now, using (4.1), (4.2) and (v), we get

∥x(t, τ, ξ, fn)− x̃(t)∥X

≤ L

∫ t

τ
∥un(αn(s))− x̃(s)∥X ds+ 2

∫
[ τ,t ]∩On

l(s) ds(4.12)

+

∫ T0

τ
∥F (αn(s), x̃(s), vn(αn(s)))− F (s, x̃(s), ỹ(s))∥X ds.

By (b), (4.8), (4.10) and the continuity of F on I ×X × Y, we deduce
that, there exists γn ↓ 0 such that

∫
[τ,T0]∩On

l(s)ds ≤ γn for n = 1, 2, . . . and

∥F (αn(s), x̃(s), vn(αn(s))) − F ((s), x̃(s), ỹ(s))∥X ≤ γn for n = 1, 2, . . . and
each s ∈ [ τ, T0 ].

On the other hand, we have ∥un(αn(t))−x̃(t)∥X ≤ ∥un(αn(t))−un(t)∥X+
∥un(t)−x(t, τ, ξ, fn)∥X+∥x(t, τ, ξ, fn)−x̃(t)∥X . From (vii), (4.4) and (4.12),
we obtain

∥un(αn(t))− x̃(t)∥X ≤ δn + L

∫ t

τ
∥un(αn(s))− x̃(s)∥Xds,

for each t ∈ [ τ, T0 ], where δn := (1+T0−τ)εn+(2+T0−τ)γn. By Gronwall’s
Lemma, we conclude ∥un(αn(t))− x̃(t)∥X ≤ δne

L(T0−τ), for each n ≥ 1 and
each t ∈ [ τ, T0 ]. Since δn → 0 and αn(t) → t uniformly for t ∈ [ τ, T0 ], we
get

(4.13) lim
n→∞

un(αn(t)) = lim
n→∞

un(t) = x̃(t),

uniformly for t ∈ [ τ, T0 ] and by (4.4),

(4.14) lim
n→∞

x(t, τ, ξ, fn) = x̃(t),
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uniformly for t ∈ [ τ, T0 ]. Thus

(4.15) lim
n→∞

zn(αn(t)) = lim
n→∞

zn(t) = lim
n→∞

u(t, τ, ζ, f̃n) = z(t)

uniformly for t ∈ [ τ, T0 ], where z := (x̃, ỹ) ∈ C([ τ, T0 ];Z).
Since zn(αn(t)) ∈ K(αn(t)), αn(t) ↑ t uniformly for t ∈ [ τ, T0 ] and

( [ τ, T0 ]×DZ(ζ, ρ) )∩K is closed from the left, from (4.15), we deduce that

(4.16) (t, z(t)) ∈ K,

for t ∈ [ τ, T0 ].
Let k ∈ N, k ≥ 1 be arbitrary. From (4.8) and (4.15) we deduce that,

the set

{(αn(t), zn(αn(t))); t ∈ [τ, T0], n ≥ k}

is compact. Since F has weakly compact values and F|[([τ,T0]\Ok)×Z]∩K is
strongly-weakly u.s.c., by Cârjă-Necula-Vrabie [6, Lemma 2.6.1, p. 47],
it follows that, for each k ≥ 1, the set

Ck := conv
( ∪
n≥k

∪
t∈[τ,T0]\Ok

F(αn(t), zn(αn(t)))
)

is weakly compact. From (v) we deduce that {f̃n; n ≥ 1} is uniformly inte-
grable in L1(τ, T0;Z) and from (iv) we deduce that, for each k ≥ 1 and each
n ≥ k, f̃n(t) ∈ Ck for each t ∈ [τ, T0] \ Ok. Since Ck is weakly compact in
Z and λ([ τ, T0 ]∩Ok) ≤ εk, by Cârjă-Necula-Vrabie [6, Diestel’s Theo-
rem 1.3.8, p. 10], it follows that {f̃n, n ≥ 1} is weakly relatively compact in
L1(τ, T0;Z). So, there exists f̃ ∈ L1(τ, T0;Z) such that, on a subsequence at
least, limn→∞ f̃n = f̃ weakly in L1(τ, T0;Z). Let us denote by f̃ := (f, g).

Since fn(s) = F (αn(s), zn(s)) for each s ∈ [ τ, T0 ]\On, F is a continuous
function, limn fn = f weakly in L1(τ, T0;X), limn(αn(s), zn(s)) = (s, z(s))
uniformly for s ∈ [ τ, T0 ] and limn λ(On) = 0, it follows that

(4.17) f(s) = F (s, x̃(s), ỹ(s))

a.e. for s ∈ [ τ, T0 ]. We notice that, in fact, limn fn = f strongly in
L1(τ, T0;X). Since gn(s) ∈ G(αn(s), zn(αn(s))) for each s ∈ [ τ, T0 ] \ Ok,
G|[(I\Ok)×Z]∩K is strongly-weakly u.s.c., limn gn = g weakly in L1(τ, T0;Y ),
limn(αn(s), zn(s)) = (s, z(s)) uniformly for s ∈ [ τ, T0 ] and, for each n ≥ k,
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we have αn(s) ∈ [ τ, T0 ] \ Ok, from Vrabie [20, Theorem 3.1.2, p. 88], we
conclude that g(s) ∈ G(s, z(s)) for each k ≥ 1 and a.e. for s ∈ [ τ, T0 ] \ Ok.
Since limk λ(Ok) = 0, we conclude that

(4.18) g(s) ∈ G(s, x̃(s), ỹ(s))

a.e. for s ∈ [ τ, T0 ]. Since B is m-dissipative of compact type, limn gn = g
weakly in L1(τ, T0;Y ) and limn y(·, τ, η, gn) = ỹ strongly in C([ τ, T0 ];Y ),
we get ỹ = y(·, τ, η, g). Finally, taking into account that x̃ is the C0-solution
of (4.11), from (4.16), (4.17) and (4.18), we conclude that z = (x̃, ỹ) is a
C0-solution of (3.1). The proof is complete. �

5. An example

Let H be a real Hilbert space, let C ⊆ H be a proper pointed closed
convex cone and let ”≼” be the partial order on H defined by C, i.e., x ≼ y
if and only if y−x ∈ C. Let φ : H → R+ ∪{∞} and ψ : H → R+ ∪{∞} be
two proper, convex and l.s.c. functions and let ∂φ : D(∂φ) ⊆ H  H and
∂ψ : D(∂ψ) ⊆ H  H be the subdifferentials of φ and ψ respectively. Let
us denote by {Sφ(t) : D(∂φ) → D(∂φ); t ≥ 0} and by {Sψ(t) : D(∂ψ) →
D(∂ψ); t ≥ 0} the nonlinear semigroups of contractions generated by the
m-dissipative operators −∂φ and −∂ψ respectively. Let a : I → D(∂φ) and
b : I → D(∂ψ) be two continuous functions. Let K : I  H ×H be defined
K(t) := {(x, y); a(t) ≼ x, y ≼ b(t)} for each t ∈ I and let K be the graph of
K. Let F : K → H be a given function and G : K H be a multi-function
with nonempty values. Let us consider the problem:

(5.1)


u′(t) ∈ −∂φ(u(t)) + F (t, u(t), v(t))

v′(t) ∈ −∂ψ(v(t)) +G(t, u(t), v(t))

u(τ) = ξ, v(τ) = η

a(t) ≼ u(t), v(t) ≼ b(t).

Definition 5.1. A continuous function (u, v) : [ τ, T ] → D(∂φ)×D(∂ψ)
is a strong solution on [ τ, T ] of (5.1) if (u, v) ∈ W 1,2(τ, T ;H × H), the
function t 7→ f(t) = F (t, u(t), v(t)) belongs to L2(τ, T ;H) and there exists
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g ∈ L2(τ, T ;H), g(t) ∈ G(t, u(t), v(t)) a.e. for t ∈ [ τ, T ] such that:

(5.2)


u′(t) ∈ −∂φ(u(t)) + f(t), a.e. for t ∈ [ τ, T ],

v′(t) ∈ −∂ψ(v(t)) + g(t), a.e. for t ∈ [ τ, T ],

u(τ) = ξ, v(τ) = η,

a(t) ≼ u(t), v(t) ≼ b(t) for each t ∈ [ τ, T ].

Using Theorem 3.2, we obtain a sufficient condition in order that K be
strongly-viable with respect to (−∂φ+ F,−∂ψ +G), i.e., in order that, for
each (τ, ξ, η) ∈ I ×H ×H with a(τ) ≼ ξ, η ≼ b(τ), the problem (5.1) has
at least one strong solution on an interval [ τ, T ].

Definition 5.2. A convex function ψ : H → R+ ∪ {∞} is called of
compact type if, for each k > 0, the level set Lk = {u ∈ H; ∥u∥2+ψ(u) ≤ k}
is relatively compact in H.

Remark 5.1. If ψ : H → R+∪{∞} is a proper, convex, l.s.c. function of
compact type, then −∂ψ generates a compact semigroup − see Vrabie [20,
Proposition 2.2.2, p. 42],− and it is an m-dissipative operator of compact
type in the sense of Definition 2.9 − see Vrabie [20, Corollary 2.3.2, p. 50].

Theorem 5.1. Let H be a real Hilbert space, let φ : H → R+ ∪ {∞}
and ψ : H → R+ ∪ {∞} be two proper, convex and l.s.c. functions, with
∂φ and ∂ψ single-valued, let a : I → D(∂φ), b : I → D(∂ψ), a, b ∈
W 1,1

loc (I;H), let C ⊆ D(∂φ) ∩ D(∂ψ) be a closed convex cone with C ∩
(−C) = {0} and D(∂φ) ∩ C = D(∂ψ) ∩ C = C. Let K be the graph of
multi-function K : I  D(∂φ) × D(∂ψ), K(t) = (a(t) + C, b(t) − C) for
each t ∈ I. Let us assume that ψ is of compact type, Sφ(t)C ⊆ C, Sψ(t)C ⊆
C for each t ∈ I and K is (−∂φ,−∂ψ) − C0-viable by itself. Let F :
I × H × H → H be a continuous function which is locally Lipschitz with
respect to its second argument and G : K H be a nonempty, convex and
weakly compact valued multi-function which is essentially locally bounded
and almost strongly-weakly u.s.c. Then, a sufficient condition in order that
K be C0-viable with respect to (−∂φ+ F,−∂ψ +G) is to exists a neglijable
set N ⊆ I such that, for each τ ∈ I \ N and each (ξ, η) ∈ ∂(C × C) ∩
(D(∂φ)×D(∂ψ)), we have

(5.3)

{
dist(∂φ(ξ)− ∂φ(a(τ) + ξ)−a′(τ)+F (τ, a(τ)+ξ, b(τ)−η);C)=0

dist(∂ψ(η) + ∂ψ(b(τ)− η)+b′(τ)−G(τ, a(τ)+ξ, b(τ)−η);C)=0.
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Proof. We will prove that (5.3) implies the next tangency condition

(F (τ, a(τ) + ξ, b(τ) − η), G(τ, a(τ) + ξ, b(τ) − η)) ∈ TS
(−∂φ,−∂ψ)
K (τ, a(τ) +

ξ, b(τ)− η) or, equivalently

(5.4) lim inf
h↓0

1

h
dist(z(τ + h, τ, a(τ) + ξ, b(τ)− η,E);K(τ + h)) = 0

for each τ ∈ I \N and each (ξ, η) ∈ (C × C) ∩ (D(∂φ)×D(∂ψ)), where

E = (F (τ, a(τ) + ξ, b(τ)− η), G(τ, a(τ) + ξ, b(τ)− η))

= {(x, y); x = F (τ, a(τ) + ξ, b(τ)− η), y ∈ G(τ, a(τ) + ξ, b(τ)− η)},
z(τ + h, τ, a(τ) + ξ, b(τ)− η,E)

= {z(τ + h, τ, a(τ) + ξ, b(τ)− η, (x, y)); (x, y) ∈ E},

and z(·, τ, a(τ) + ξ, b(τ)− η, (x, y)) is the C0-solution of the problem

(5.5)

{
z′(t) ∈ (−∂φ,−∂ψ)z(t) + (x, y)

z(τ) = (a(τ) + ξ, b(τ)− η).

Let us denote by z(·, τ, a(τ)+ ξ, b(τ)− η, (x, y)) := (u(·), v(·)). Then u(·) :=
u(·, τ, a(τ) + ξ, x), where x = F (τ, a(τ) + ξ, b(τ)− η), is a C0-solution of

(5.6)

{
u′(t) ∈ −∂φ(u(t)) + x

u(τ) = a(τ) + ξ,

and v(·) := v(·, τ, b(τ) − η, y), where y ∈ G(τ, a(τ) + ξ, b(τ) − η), is a C0-
solution of

(5.7)

{
v′(t) ∈ −∂ψ(v(t)) + y

v(τ) = b(τ)− η.

Let us denote by Oj , j = 1, 2, . . . some functions defined on (0, 1) with
values in H, with limh↓0Oj(h) = 0.

Let h ∈ (0, 1), ξ ∈ C∩D(∂φ), η ∈ C∩D(∂ψ) such that a(τ)+ξ ∈ D(∂φ)
and b(τ)− η ∈ D(∂ψ). Let us denote by x = F (τ, a(τ)+ ξ, b(τ)− η) and let
y ∈ G(τ, a(τ) + ξ, b(τ)− η) be arbitrary but fixed. We have

(5.8)

{
a(τ + h) = a(τ) + ha′(τ) + hO1(h)

b(τ + h) = b(τ) + hb′(τ) + hO1(h),
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(5.9)

{
u(τ + h, τ, a(τ) + ξ, x) = a(τ)+ξ−h∂φ(a(τ)+ξ)+hx+ hO2(h)

v(τ + h, τ, b(τ)− η, y) = b(τ)−η−h∂ψ(b(τ)− η)+hy + hO2(h),

and

(5.10)

{
Sφ(h)ξ = ξ − h∂φ(ξ) + hO3(h)

Sψ(h)η = η − h∂ψ(η) + hO3(h),

where {Sφ(t) : D(∂φ) → D(∂φ), t ≥ 0} and {Sψ(t) : D(∂ψ) → D(∂ψ), t ≥
0} are the nonlinear semigroups generated by −∂φ and −∂ψ respectively.

Since ξ ∈ C ∩D(∂φ), η ∈ C ∩D(∂ψ), Sφ(h)C ⊆ C, Sψ(h)C ⊆ C and C
is a convex cone, it follows that

(5.11) C ⊆ −Sφ(h)ξ + C, C ⊆ −Sψ(h)η + C and hC = C.

In view of (5.8), (5.9), (5.10) and (5.11) we get

dist(u(τ + h, τ, a(τ) + ξ, x); a(τ + h) + C)

= dist(a(τ)+ξ−h∂φ(a(τ)+ξ)+hx+ hO2(h); a(τ) + ha′(τ) + hO1(h) + C)

= dist(ξ − Sφ(h)ξ−h∂φ(a(τ)+ξ)−ha′(τ)+hx+ hO4(h);−Sφ(h)ξ + C)

= dist(h∂φ(ξ)− h∂φ(a(τ) + ξ)− ha′(τ) + hx+ hO5(h);−Sφ(h)ξ + C)

≤ dist(h∂φ(ξ)− h∂φ(a(τ) + ξ)− ha′(τ) + hx+ hO5(h);C)

≤ dist(h∂φ(ξ)− h∂φ(a(τ) + ξ)− ha′(τ) + hx+ hO5(h);hC).

So, we have

dist(u(τ + h, τ, a(τ) + ξ, x); a(τ + h) + C)(5.12)

≤ hdist(∂φ(ξ)− ∂φ(a(τ) + ξ)− a′(τ) + x;C) + h∥O5(h)∥.

Similarly we deduce

dist(v(τ + h, τ, b(τ)− η, y); b(τ + h)− C)

= dist(b(τ)− η−h∂ψ(b(τ)−η) + hy+hO2(h); b(τ)+hb
′(τ)+hO1(h)− C)

= dist(η − Sψ(h)η+h∂ψ(b(τ)− η)+hb′(τ)−hy+hO6(h);−Sψ(h)η + C)

= dist(h∂ψ(η) + h∂ψ(b(τ)− η) + hb′(τ)− hy + hO7(h);−Sψ(h)η + C)

≤ dist(h∂ψ(η) + h∂ψ(b(τ)− η) + hb′(τ)− hy + hO7(h);C)

≤ dist(h∂ψ(η) + h∂ψ(b(τ)− η) + hb′(τ)− hy + hO7(h);hC).
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So, we have

dist(v(τ + h, τ, b(τ)− η, y); b(τ + h)− C)(5.13)

≤ hdist(∂ψ(η) + ∂ψ(b(τ)− η) + b′(τ)− y;C) + h∥O7(h)∥.

On the other hand, we have

dist(z(τ + h, τ, a(τ) + ξ, b(τ)− η,E);K(τ + h))

≤ dist(u(τ + h, τ, a(τ) + ξ, x); a(τ + h) + C)(5.14)

+ dist(v(τ + h, τ, b(τ)− η, y); b(τ + h)− C).

Dividing by h and passing to the limit for h ↓ 0 in (5.14) and using
(5.12) and (5.13), we get

lim inf
h↓0

1

h
dist(z(τ + h, τ, a(τ) + ξ, b(τ)− η,E);K(τ + h))

≤ dist(∂φ(ξ)− ∂φ(a(τ) + ξ)− a′(τ) + x;C)(5.15)

+ dist(∂ψ(η) + ∂ψ(b(τ)− η) + b′(τ)− y;C)

for each y ∈ G(τ, a(τ) + ξ, b(τ)− η), where x = F (τ, a(τ) + ξ, b(τ)− η).
If (ξ, η) ∈ ∂(C × C) ∩ (D(∂φ)×D(∂ψ)), we have

dist(∂ψ(η) + ∂ψ(b(τ)− η) + b′(τ)−G(τ, a(τ) + ξ, b(τ)− η);C)

= inf{dist(∂ψ(η) + ∂ψ(b(τ)− η) + b′(τ)− y;C);

y ∈ G(τ, a(τ) + ξ, b(τ)− η)}

and, by (5.3) and (5.15) we conclude that (5.4) holds true.
If (ξ, η) ∈ ((C × C) \ ∂(C × C)) ∩ (D(∂φ) × D(∂ψ)) then, for h > 0

small enough, we have dist(z(τ + h, τ, a(τ) + ξ, b(τ)− η,E);K(τ + h)) = 0.
So (5.4) holds true for each (ξ, η) ∈ (C × C) ∩ (D(∂φ) ×D(∂ψ)) and this
completes the proof. �

Remark 5.2. Since F is single-valued, G is a convex and weakly com-
pact valued multi-function and C is convex and closed, (5.3) is equivalent
to: for each τ ∈ I \N and each (ξ, η) ∈ ∂(C×C)∩ (D(∂φ)×D(∂ψ)), there
exists y ∈ G(τ, a(τ) + ξ, b(τ)− η) such that

(5.16)

{
∂φ(ξ)− ∂φ(a(τ) + ξ)− a′(τ) + x ∈ C

∂ψ(η) + ∂ψ(b(τ)− η) + b′(τ)− y ∈ C,

where x = F (τ, a(τ) + ξ, b(τ)− η).
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